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Abstract---Analytical solutions are presented to predict the intergranular contact load transfer in
cemented granular media where both grain material and cement are elastic. The grains can be
separated, have a direct point contact. or be compacted prior to cement deposition. For all these
cases contact stress distributions are obtained for normal, tangential and torsional deformation of
two cemented defonnable grains. An important result is that intergranular cement, even if very soft,
is load-bearing. Thus cementation reduces contact strcss concentration (as compared with direct
Hertzian interaction). Contact stresses are maximum near the center of the contact region when the
cement is soft relative to the grains, and are maximum at the periphery of the contact region when
the cement is stiff. These results allow us to predict the following modes of static and dynamic
failure of the grains and intergranular bonds in a particulate material. (I) Uncemented grains will
tend to shatter whereas cemented grains will stay intact. and the cement will fail. (This conclusion
is supported by hydrostatic loading experiments where intensive crushing of uncemented glass beads
was observed at about 50 MPa, whereas grains cemented at their contacts with small amounts of
epoxy stayed intact.) (2) Where intergranular cementation is present, grain failure may still be
expected if the cement is strong and stiff. In this case, grain damage will be initiated at the periphery
of the cement layer. (3) Yielding of a cement material that is soft (as compared with the grain
material) will initiate at the center of the contact region, whereas stiff cement will yield at the
periphery.

INTRODUCTION

The study of dynamic and static load transmission in granular media is important in
different branches of engineering and geophysics. Artificial and natural granular materials
behave as good shock attenuators and as such are used to isolate shock-sensitive instru­
ments. Such materials can be used to protect underground facilities from explosion-associ­
ated damage. Many rocks can be treated as granular media. Understanding and quantifying
shock wave propagation in rocks helps in detecting and locating nuclear explosions.

The mechanical static and dynamic characteristics of granular materials can be sig­
nificantly affected by intergranular cementation. One way to understand and quantify this
dependence is by studying grain-to-grain microscale interaction because in a dry granular
material load is transferred mainly through contact mechanisms between neighboring
particles [e.g. ada et al. (1982) ; Shukla et al. (1988) : Sadd et al. (1989)].

Recent advancements in studying the effect of intergranular cementation on the elastic
and inelastic behavior of particulate materials include a numerical and experimental inves­
tigation by Bruno and Nelson (1991), an experimental study by Bernabe et al. (1992) and
numerical (distinct element method) works by Trent (1989) and Trent and Margolin (1992).
One important detail that has been missing in all these cementation-related works is a
theoretical description of interparticle contact laws. Dvorkin et al. (1991, 1994) have
examined normal and shear stress transmission between deformable particles through
deformable interparticle cement bonds. Two cemented particles could be separated or have
a point direct contact (Fig. 1). Three main assumptions were: (1) a thin cement layer
subject to normal and shear load can be approximately treated as an elastic foundation;
(2) the width of the cemented zone is small compared with the grain radius so that a grain
can be treated as an elastic half-space; and (3) there is no slip between grains and at grain­
cement interfaces. The first assumption has been justified by an approximate analytical
solution for the normal and shear deformation of a thin smooth cement layer (Dvorkin et
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Fig. I. Len separated grains. grains with a point contact. and precompacted grains. Right: normal,
shear. and torsional deformation of two cemented grains.
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Fig 2. "ormal (A and B) and shear (e and D) stresses in the cement along the radii of the cement
layers between two spherical grains with a point contact. The Poisson's ratios of both grain and
cement materials are constant and equal O.2X. The stiffness of the cement varies relative to that of
the grains: from very soft cement (A and C) to very stiff cement (B and D). Vp denotes compressional
wave velocity in the material. The ratio of the radius of the cement layer to the grain radius is 0.33.
Stresses are normalized by the average stress. The radial coordinate r (Fig. I) is normalized by the

radius of the cement layer.

af.. 1991). Based on these assumptions the problem of grain-cement deformation has been
reduced to an ordinary integral equation for the normal and shear stresses at the cemented
interface.

The solution has revealed a peculiar pattern of normal and shear stress distribution at
the cemented grain contacts: the stresses are maximum at the center of the contact region
when the cement is soft relative to the grain, and are maximum at the periphery of the
contact region when the cement is stiff (Fig. 2). The physical explanation of this pattern is
as follows: when a soft cement layer is confined between two rigid grains, strain and stress
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in it are maximum at its thinnest part--near the center of contact. When the cement is stiff
relative to the grain material, its action on the grain is close to that of a rigid punch
penetrating an elastic half-space [e.g. Johnson (1992)]. In this case stress concentration is
expected at the periphery of the punch.

The macroscopic stiffness of a cemented system increases with the increasing radius of
the cement layer and with its increasing stiffness. The former factor is the most important:
the small increase of the cementation content results in significant growth of a contact
zone between two contacting grains and, because the cement is load-bearing, dramatically
increases the stiffness of a two-grain system and thus the macroscopic stiffness ofa cemented
particulate material. This conclusion holds even if the cement is relatively soft.

In this paper we concentrate on the description of normal. shear and torsional stress
transmission between two elastic grains that were initially precompacted by a normal force
to develop a finite (Hertzian) direct contact area. Afterwards cement was deposited around
the initial contact zone (Fig. I). Our analytical solutions have been obtained under the
same assumptions as in the uncompacted case. The results show that in soft cement. normal
and shear stresses developed due to the continuing deformation of two grains are maximum
at the periphery of the initial contact zone between two grains. These stresses reduce
towards the periphery of the cement layer. However, in stiff cement. contact stresses are
maximum at the periphery of the cement layer.

Below, we give solutions to the problems of normal and shear deformation of two
precompacted cemented spherical grains. Similar solutions for two-dimensional grains
(cylinders) are given in Appendix A. Torsional deformation of two spherical cemented
grains (both uncompacted and precompacted cases) is explored in Appendix B. The theor­
etical results are compared with our experimental data.

We also discuss the implications of the obtained solutions for the failure of cemented
granular materials.

NORMAL A'-JD SHEAR DEFORMATION OF TWO PRECOMPACTED GRAINS

Precompacted grains
Consider two identical elastic spherical grains of radius R that are normally pressed

together by force PH to form a circular contact area of radius a. Then

(I)

where G and v are the grain shear modulus and Poisson's ratio, respectively (e.g. Johnson
(1992)]. This intergranular force PH can be easily calculated from the hydrostatic pressure
Po acting at a random pack of identical spherical grains:

(2)

where C is the average number of contacts per grain (about nine) and 4> is the porosity of
the pack (about 36%).

From Hertz's solution, the initial distribution of normal stresses PH on the surface of
the precompacted grains is:

4G ., '
PH = ---I -~((r-r-).r";;a;

nR( - v)

PH = 0,1' > a.

The corresponding initial displacements l'H of the grain surface are:

(3)
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Fig. 3. Left: contact area between two prccompacted cemented grains with cement added after
compaction. Right: cement layer, its initial thickness and its displacements.

I I " (a) I( a
2)JvH(r) = rrR L(2a- -1'-) arcsin;: +ar~ 1- r 2 ' a < I' ~ b. (4)

After the initial compaction, elastic cement is uniformly added around the direct grain
contact zone to increase the radius of the contact area to b (Fig. 3). It follows from eqns
(4) that the half-thickness of the undeformed cement layer between two precompacted
spherical grains is:

a2[(1'2) l(r
2

) l(r2 )J!Ill (I') =-R' -~ - 2 arctan / ---:; - I + I -~ - I , a ~ r ~ b.
rr cr 'v a- \j a-

(5)

Normal deformation
Consider now additional normal loading of the grains with force !!..P that produces

additional displacement () of each grain's center towards their contact zone. The resulting
total normal displacements 1'(r) of the grain surface within the area of the initial direct
contact are:

r
r(r) = 6- 2R' 0 < r ~ a. (6)

Within the cemented zone, a < I' ~ h, the total normal displacements of the grain
surface u(r) are related to the normal displacements of the cement as:

(7)

where V(r) is the normal displacement of the cement surface (at the cement-grain interface)
relative to the median plane of the cement layer (Fig. 3).

By treating the cement layer as an elastic foundation, we have the following expression
for normal stresses per) at the cement-grain interface:

per) =
2Gc ( I - I'J VCr)

---- --- ---- a < r :s; b,
1-2\', hil(r) ,

(8)

where Gc and Vc are the cement's shear modulus and Poisson's ratio, respectively.
Finally, treating the grain as an elastic half-space, we have the following expression

that relates normal stresses per) to normal displacements v(r) of the grain's surface (Timo­
shenko and Goodier, 1970):
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Fig. 4. Domain of integration in eqn (9).
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(9)

where the integration is inside the circle [rl ~ b (Fig. 4).
Now we combine eqns (6)-(9) to obtain the following integral equation for normal

stress p(r) :

Let us present the normal stress per) as the sum of the initial Hertzian stress PH(r) and
the additional normal stress fer) :

per) =PH(r)+!(r).

It follows then from eqns (4) and (9)-(11) that

(lJ)

This last equation can be easily solved using the numerical quadrature method [e.g. Delves
and Mohamed (1985)].

The constant c5 can be found from the resulting force I1P:

I1P = r
h

f (r)2nrdr.
J(l

(13)

Shear deformation
Our treatment of the shear deformation of two cemented grains is analogous to that

of the normal deformation: we assume that after cement deposition a tangential force Q is
exerted on the system to produce the tangential displacement T ofeach grain's center relative
to the contact zone. The resulting tangential displacements u(r) of the grain surface within
the area of the initial direct contact are:
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u(r) = T,O < r ~ a. (14)

Within the cemented zone, a < r ~ b, the tangential displacements of the grain surface
u(r) are related to the tangential displacements of the cement as:

VCr) = u(r) -T, (15)

where VCr) is the displacement of the cement surface (at the cement-grain interface) relative
to the median plane of the cement layer.

By treating the cement layer as an elastic foundation in shear, we have the following
expression for tangential stresses q(r) at the cement-grain interface:

(16)

Now treating the grain as an elastic half-space, we have the following approximate
expression that relates shear stresses q(r) to tangential displacements u(r) of the grain's
surface (Dvorkin et al., 1994):

u(r) = n~ f: dcp tCOS<P+)(h2-r2SIn2<p) q[~(r2+S2 -2rscos cp)](l-v sin2 cp) ds, (17)

where the integration is inside the circle Irl ~ b (Fig. 4).
Finally, we combine eqns (14)-(17) to obtain the following integral equation for shear

stress q(r) :

(18)

Again, this integral equation can be easily solved using the numerical quadrature method.
The constant T can be found from the resulting force Q:

Q = J: q(r)2nr dr. (19)

Contact stresses
Normal stresses in the contact zone of two precompacted grains are given in Fig. 5.
The ratio of the cement radius b to the grain radius R was 0.7, the radius a of the

initial zone of direct grain contact was 0.105 of R (0.15 of b). The elastic moduli of the
grains were constant and equal to those of glass (bulk modulus 49.9 GPa and shear modulus
26.2 GPa). The bulk and shear moduli of the cement varied from 1.7 and 0.5 GPa,
respectively, to 170.0 and 50.0 GPa. In the second example (6.8 and 2.0 GPa) the elastic
moduli of the cement are identical to those of epoxy.

When the cement is relatively soft, we observe the concentration of the additional
normal contact stresses at the periphery of the direct grain contact zone (r = a). The
physical meaning of this effect is: in the soft cement layer stresses are maximum at its
thinnest part~near its inner boundary (r --> a, r > a). In the direct grain contact region we
have the condition of a constant additional displacement b~analogous to that on the face
of a rigid punch penetrating an elastic half-space. This is the reason for the additional
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Fig. 5. Additional normal stresses/(r) along the radii of cement layers for varying relative rigidity
of the cement and grain materials. Stresses are normalized by the average additional stress. The

horizontal axis is the normalized distance along the radius of the cement layer.

contact stress concentration on the direct contact side (r ---> a, r < a) of the contact region
o~ r ~ b.

As the cement becomes stiffer, its action on the grain approaches that of a rigid punch
of radius b. Therefore, we observe stress concentration on the periphery of the cement layer
at r = b.

Shear stresses for the six above cases are given in Fig. 6. The patterns of stress
distribution and their physical meaning are similar to those observed for normal stresses.
It is important to notice that in this case we have used the no-slip condition in the direct
grain-to-grain contact zone. Clearly, this condition is not valid if shear stresses are high
and slip does occur. However, we justify this approximation by the fact that for small
tangential forces exerted on contacting bodies, stress distributions that are produced from
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Fig. 6. Shear stresses q(r) along the radii of cement layers for varying relative rigidity of the cement
and grain materials. Stresses are normalized by the average shear stress. The horizontal axis is the

normalized distance along the radius of the cement layer.

the no-slip solutions are fairly close to those produced from the partial-slip solutions [see
examples in Johnson (1992)].

EXPERIMENT

Our experiment has been conducted on hydrostatically precompacted glass beads
cemented with epoxy. The cemented samples were prepared by mixing glass beads (0.2--0.3
mm in diameter) with a given volume of epoxy (10, 25, 50 and 100% of the pore space
volume). They were compacted at 20 MPa prior to epoxy solidification. Compressional
(Vp) and shear (Vs) wave velocities have been measured at 1 MHz frequency using the pulse
transmission technique.
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Fig. 7. Experimental and theoretical results on precompacted epoxy-cemented glass beads. Circles
show experimental points, solid lines are theoretical predictions.

The above-derived contact laws for the normal and shear deformation of two pre­
compacted cemented grains have been used to calculate the effective bulk and shear moduli
of a random packing of identical elastic spheres. These theoretical predictions are compared
with the experimental results in Fig. 7. The agreement between the theory and the exper­
iments is within 15% accuracy.

IMPLICATIONS FOR GRAIN AND CEMENT FAILURE

One important result following from the above-derived grain--eement-grain contact
laws is that intergranular cement, even if very soft, is load-bearing. Thus cementation
reduces contact stress concentration (compared with direct Hertzian interaction). As a
result, even small amounts of relatively soft cement may prevent grain failure: uncemented
grains will tend to shatter whereas cemented grains will stay intact and the cement will fail.
This conclusion has been supported by hydrostatic loading experiments where intensive
crushing of uncemented glass beads was observed at about 50 MPa, whereas grains
cemented at their contacts with small amounts of epoxy (10% of the pore space volume)
stayed intact (Fig. 8). The observed effect follows from our theory of cemented granular
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Fig. 8. Porosity versus hydrostatic confining pressure in water-saturated randomly packed glass
beads that were (a) uncemented and (b) cemented by epoxy at their contacts (Yin and Dvorkin,
1994). Porosity was measured by the volume of expelled fluid. In the uncemented case, a sharp
porosity decrease is observed at about 50 MPa. The decrease is associated with the crushing of
grains. The cemented grains (the volume of the epoxy accounted for only 10% of the pore space)
did not crush. The photos showed that in the latter case, the grains stayed intact with the failure

being localized within the epoxy.
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materials: stress concentration is high at the contacts of uncemented grains, whereas even
small amounts of relatively soft cement result in a more uniform stress distribution over a
larger contact area. The total force transmitted between two grains must, of course, remain
the same in the cemented and uncemented cases; however, the stresses at the cemented
interface decrease dramatically compared with the Hertzian contact case.

The contact stress distributions as obtained, imply the following modes of static
and dynamic failure of the grains and intergranular bonds in a particulate material: (1)
uncemented grains will tend to fail whereas cemented grains will stay intact, and the cement
will fail; (2) where intergranular cementation is present, grain failure may still be expected
if the cement is strong and stiff-in this case, grain damage will be initiated at the periphery
of the cement layer; (3) yielding of a cement material that is soft (compared with the grain
material) will initiate at the center of the contact region, whereas stiff cement will yield at
the periphery.

CONCLUSIONS

All the solutions presented in this paper have been applied to the interaction of two
circular grains. Note that the contact law solutions obtained are more general and can be
applied to cemented elastic grains with arbitrarily-shaped contact surfaces as long as the
underlying assumptions are valid. Specifically, the cement layer has to be thin and small
compared with a grain, and in addition contacting grain surfaces have to be smooth, so
that the elastic foundation approximation is valid. The shape of grain surfaces will affect
the thickness of the cement layer, and the initial stress distribution at the direct contact
area of precompacted grains.

In the example presented in Fig. 7 we have used formulas for the effective bulk and
shear moduli of a random packing of identical spherical grains as given by Digby (1981)
and Winkler (1983). Again, our contact laws can be used to describe the effective properties
of more complicated arrangements of cemented grains. Specifically, these contact laws can
be plugged into sophisticated numerical schemes (e.g. the Distinct Element Method).

One important assumption that has been used in treating the problems of shear and
torsional deformation of precompacted cemented grains is the no-slip condition in the
direct grain-to-grain contact zone. This assumption is valid only if stresses are small, so
that stress distributions obtained under the no-slip assumption are close to those obtained
by considering the relative sliding of contacting grains [see examples in Johnson (1992)].
At the same time, the computed shear stress distributions shown in Fig. 6 indicate that the
sliding will initiate at the periphery of the direct grain-to-grain contact area only if the
cement is very soft compared with the grain material. In most cases, we do not expect to
encounter high stress concentration and sliding in the mentioned area.

The solutions presented can describe the dynamic interaction of cemented grains only
if the quasi-static approximation is valid, i.e. the wavelength is significantly larger than the
characteristic microscopic dimension (the grain radius). This was the case in the ultrasonic
pulse transmission experiment described above: the wavelength was approximately 10 times
the average grain diameter. These solutions can also be applied to describing shock wave
propagation in a particulate medium if the length of the pulse is much larger than the grain
radius.
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APPENDIX A: TWO PRECOMPACTED CYLINDERS

Precompaction
Consider two identical elastic circular cylinders (plane strain) of radius R that are normally pressed together

by force PH to form a contact area of half-width a. Then (Johnson, 1992)

(AI)

The initial distribution of normal stresses PH on the surface of the precompacted cylinders is:

_ G I 2 2
PH - R(I- v) V (a - r), Ixl';; a;

PH = 0, Ixl > a. (A2)

Here x is the coordinate along the median line of the cement layer in the plane perpendicular to the cylinder's
axis, analogous to the r coordinate in the three-dimensional case.

By treating the cylinder as an elastic half-plane, we have the following expression for the initial normal
displacements vH(r) of the cylinder's surface from normal stresses PH(r) (Johnson, 1992) :

(A3)

After the initial compaction, cement is uniformly added around the direct contact zone to increase the half­
width of the contact area to b. It follows from eqn (A3) that the half-thickness of the undeformed cement layer
between two precompacted circular cylinders is :

(A4)

Normal deformation
Consider now additional normal loading of the cylinders with force J'iP. The resulting total normal dis­

placements vex) of the cylinder surface within the area of the initial direct contact are:

a2 _x2

v(x)-v(a) = 2R' Ixl';; a. (A5)

Within the cemented zone, a < Ixl ,;; b, the total normal displacements of the grain surface vex) are related
to the normal displacements of the cement as:

(A6)

where VCr) is the normal displacement of the cement surface (at the cement-eylinder interface) relative to the
median line of the cement layer.

By treating the cement layer as an elastic foundation, we have the following expression for normal stresses
p(x) at the cement-grain interface:
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2G,( I - vel V(x)
p(x) = - 1-21', hH(x)' a < Ixl ~ b.

Equation (A3) now takes the following form:

I-v fh
/·(x) = - -;c _/(.1) In Ix-sl ds+const.

Now we combine eqns (A5) -(A8) to obtain the following integral equation for normal stress p(x) :

(A7)

(A8)

1 1'[" fl< ]"(x) -1'(a) = - n~ L/(S) In Ix-sl ds- ./(s) In Ix-sl ds

a < Ixl ~ b.

(A9)

Let us now present the normal stress p(x) as the sum of the initial Hertzian stress PH(X) and the additional
normal stressf(x) :

p(x) = PH(X)+!(x).

It follows then from eqns (A2), (A3). (A9), and (AIO) that

h . r0, Ixl ~ a;

f !(5}lnlx-slds+const='I~ 1-21', .
h .1_v2G,(l_vCl!(x)hH (x), a<lxl~b.

This last equation can be solved using the numerical quadrature method.
The constant in the left-hand part of eqn (A II) can be found from the resulting force !:iP:

(AIO)

(All)

(AI2)

Shear deformation
In the two-dimensional case under consideration, the treatment of the shear deformation of two cemented

grains is identical to that of the normal deformation: eqn (A8) is replaced by:

eqn (A5) is replaced by

eqn (A6) is replaced by

and eqn (A 7) is replaced by

l-Vfh
u(x) = - -;c h q(s} In Ix-·\I ds+const;

u(x) -u(a) = 0, Ixl ~ a;

U(x) = u(x)-u(a), a < Ixl ~ b;

U(x)
q(x} = - G, h

H
(x)' a < Ixl ~ b.

(Al3)

(AI4)

(AI5)

(AI6)

The definitions of the tangential displacements u(x) of the cylinder's surface, tangential displacements U(x) of the
cement, and shear stresses q(x) in contact zone are the same as in the spherical case. Again, as in the spherical
case, we assume the no-slip condition in the direct contact zone. This assumption is valid if shear stresses are
small.

Similar to the case of normal deformation, we arrive at the following integral equation for stresses q(x) :

0" 10' Ixl ~ a;

I q(s) In Ix-sl ds+const = 'l. nG. .
• -h (1- v)G, q(x)hH(·x), a < Ixl ~ b,

where the constant in the left-hand part of equation can be found from the resulting shear force Q:

(AI7)



Contact laws for cemented grains

Q ~ L, '1(x) dx.
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(AI8)

Normal and shear stress distributions in this two-dimensional case are qualitatively similar to those obtained
for two precompacted spheres.

APPENDIX B. TORSIONAL DEFORMATIO"i OF TWO SPHERICAL GRAINS

Uncompacted grains
Consider a twisting moment Iv! applied to the system of two cemented spherical grains (Fig. I). Shear stress

components '1(1') acting on the grain--{;ement interface are axisymmetrical, and the only non-zero displacement of
the grain surface u(r) is perpendicular to the polar radius I' (Fig. B I).

The displacements u(r) are related to stresses '1(1') as (Johnson, 1992) .

u(r) = ~ I" d~~ I"'"''''''
rrG ~iJ ,,(I

·",c.p, '1[-)(1" +.1' -2rscos~)1
-.-.---. ·-·----(r-scos~)ds,

-) (I" +.I' - 21'S cos ,p)
(BI)

where integration is inside the circle Ir! ~ a in the plane of contact (see Fig. 4).
The tangential displacement of the grain surface u(r) and the tangential displacement of the cement layer

surface relative to its median plane U(r) are related to the respective angles of rotation fJ(r) and B(r) as:

11(1') = r{i(r). U(r) = rB(r).

The condition of displacement compatibility between the grain and the cement surface is:

(J(r) = B(r) +;.

(B2)

(B3)

where )' represents the grain' s rigid rotatIon
Treating the cement layer as an elastic foundation in torsion. we have the following relation between stress

'1(1') and angle B(r) :

, U(r)
'1(1') = -(,--­

, 17(1')

. rB(r)
G--

, 17(1') • (B4)

where h(r) is the half-width of the cement layer. For a cement layer betwcen two spheres:

where ho is the minimum half-separation between the spheres.
Finally, eqns (Bl ) (B5) yield the following integral equation for B(r) :

G, I" I"'"'''''' W ,',.,,' "" Blv (1" +.1' -. 2rs.cos ~)](r-scos~)r[j' + B(r)] = - --- d~ -- ds.

rrG [I [I [ I (I" " rs )J" R 1:- .. ----;- + ----:; -2----:;cos~
2 R- R- W

The constant i in egn (B6) can be found from the resulting twisting moment M:

(B5)

(B6)

r

Fig. B I. Torsional displacements and shear stresses in the plane of grain-cement-grain contact. The
problem under consideration is treated in a linear approximation, so we assume the contact zone is

planar
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.~" B(r)r'
!H = -2IT0, I ' dr.

." R( r)1'+--
2R'

(B7)

The resultll1g distributions of the twisting shear stresses along the radius of a cement layer are qualitatively
similar to those shown in Fig. 1.

Prcco/lljJile/cd .waills
The treatment of this problem is analogous to that used in the problems of normal and shear deformation of

two preeompacted grains. The resulting integral equation for the twisting shear stresses '1(r) in the contact zone
is:

t
Ul~,' . 1.1>

7l(; dip I
~.' (I

. . r yr, r':; iI;
'/[,,(r +.\., , 2rseosrp)](r-scos(p) . (B8)

, , ds = \ '1(r)h H (1')
v(I"+\'-1ncostp) li'r-~-, a<r,:;b.

The constant here can be found from the resulting twisting moment:

~
;.

/'11 = 2IT '1(r)r'dr.

."
(B9)

The computed distributions of twisting shear stresses are similar to those shown in Fig. 6.
This solution uscs the no,slip condition in the direct grain-grain contact zone. The assumption is valid if

shear stresses arc sinall.


